LOAD: Local orientation adaptive descriptor for texture and material classification

نویسندگان

  • Xianbiao Qi
  • Guoying Zhao
  • LinLin Shen
  • Qingquan Li
  • Matti Pietikäinen
چکیده

In this paper, we propose a novel local feature, called Local Orientation Adaptive Descriptor (LOAD), to capture regional texture in an image. In LOAD, we proposed to define point description on an Adaptive Coordinate System (ACS), adopt a binary sequence descriptor to capture relationships between one point and its neighbors and use multi-scale strategy to enhance the discriminative power of the descriptor. The proposed LOAD enjoys not only discriminative power to capture the texture information, but also has strong robustness to illumination variation and image rotation. Extensive experiments on benchmark data sets of texture classification and real-world material recognition show that the proposed LOAD yields the state-of-the-art performance. It is worth to mention that we achieve a 65.4% classification accuracy– which is, to the best of our knowledge, the highest record by far –on Flickr Material Database by using a single feature. Moreover, by combining LOAD with the feature extracted by Convolutional Neural Networks (CNN), we obtain significantly better performance than both the LOAD and CNN. This result confirms that the LOAD is complementary to the learning-based features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching

Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...

متن کامل

Texture descriptor based on local combination adaptive ternary pattern

Material recognition has several applications, such as image retrieval, object recognition and robotic manipulation. To make the material classification more suitable for real-world applications, it is fundamental to satisfy two characteristics: robustness to scale and to pose variations. In this study, the authors propose a novel discriminant descriptor for texture classification based on a ne...

متن کامل

New Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor

Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

Convolution Comparison Pattern: An Efficient Local Image Descriptor for Fingerprint Liveness Detection

We present a new type of local image descriptor which yields binary patterns from small image patches. For the application to fingerprint liveness detection, we achieve rotation invariant image patches by taking the fingerprint segmentation and orientation field into account. We compute the discrete cosine transform (DCT) for these rotation invariant patches and attain binary patterns by compar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 184  شماره 

صفحات  -

تاریخ انتشار 2016